Skip to content Skip to footer

References

Full set of references used in this website.

Also available in a Zotero web-library.

  1. Cliffe, A. (2023). Overview: Terra on Azure. In Terra Support. https://support.terra.bio/hc/en-us/articles/12028783864859-Overview-Terra-on-Azure
  2. Yoo, S., Garg, E., Elliott, L. T., Hung, R. J., Halevy, A. R., Brooks, J. D., Bull, S. B., Gagnon, F., Greenwood, C. M. T., Lawless, J. F., Paterson, A. D., Sun, L., Zawati, M. H., Lerner-Ellis, J., Abraham, R. J. S., Birol, I., Bourque, G., Garant, J.-M., Gosselin, C., … Strug, L. J. (2023). HostSeq: a Canadian whole genome sequencing and clinical data resource. BMC Genomic Data, 24(1), 26. https://doi.org/10.1186/s12863-023-01128-3
  3. IBM. (2023). Aspera. https://www.ibm.com/products/aspera
  4. Warren, V., Critchley, C., McWhirter, R., Walshe, J., & Nicol, D. (2023). Context matters in genomic data sharing: a qualitative investigation into responses from the Australian public. BMC Medical Genomics, 15(3), 275. https://doi.org/10.1186/s12920-023-01452-8
  5. Paltiel, M., Taylor, M., & Newson, A. (2023). Protection of genomic data and the Australian Privacy Act: when are genomic data ‘personal information’? International Data Privacy Law, ipad002. https://doi.org/10.1093/idpl/ipad002
  6. Lynch, F., Meng, Y., Best, S., Goranitis, I., Savulescu, J., Gyngell, C., & Vears, D. F. (2023). Australian public perspectives on genomic data storage and sharing: Benefits, concerns and access preferences. European Journal of Medical Genetics, 66(1), 104676. https://doi.org/10.1016/j.ejmg.2022.104676
  7. Wong, E., Bertin, N., Hebrard, M., Tirado-Magallanes, R., Bellis, C., Lim, W. K., Chua, C. Y., Tong, P. M. L., Chua, R., Mak, K., Lim, T. M., Cheong, W. Y., Thien, K. E., Goh, K. T., Chai, J.-F., Lee, J., Sung, J. J.-Y., Wong, T. Y., Chin, C. W. L., … Tan, P. (2023). The Singapore National Precision Medicine Strategy. Nature Genetics, 1–9. https://doi.org/10.1038/s41588-022-01274-x
  8. Malakar, Y., Lacey, J., Twine, N. A., McCrea, R., & Bauer, D. C. (2023). Balancing the safeguarding of privacy and data sharing: perceptions of genomic professionals on patient genomic data ownership in Australia. European Journal of Human Genetics, 1–7. https://doi.org/10.1038/s41431-022-01273-w
  9. NeIC. (2023). NeIC SDA Operations handbook. https://neic-sda.readthedocs.io/en/latest/
  10. Lalova-Spinks, T., Meszaros, J., & Huys, I. (2023). The application of data altruism in clinical research through empirical and legal analysis lenses. Frontiers in Medicine, 10. https://www.frontiersin.org/articles/10.3389/fmed.2023.1141685
  11. Cowley, M., Downton, M., Holliday, J., Kummerfeld, S., Leonard, C., Lin, A., Pope, B., San Kho Lin, V., Ravishankar, S., Shadbolt, M., Syed, M., Taouk, K., & Wong-Erasmus, M. (2022). Virtual Cohort Assembly Discovery Phase Report: National Community Needs & Candidate Solutions. Zenodo. https://doi.org/10.5281/zenodo.7439886
  12. Genomics, A. (2022). National Approach to Genomic Information Management (NAGIM) Implementation Recommendations. https://www.australiangenomics.org.au/wp-content/uploads/2021/06/NAGIM-Implementation-Recommendations-December-2022.pdf
  13. ABS. (2022). A caring nation – 15 per cent of Australia’s workforce in Health Care and Social Assistance industry \textbar Australian Bureau of Statistics. https://www.abs.gov.au/media-centre/media-releases/caring-nation-15-cent-australias-workforce-health-care-and-social-assistance-industry
  14. Genomics, A. (2022). National Approach to Genomic Information Management (NAGIM) Implementation Recommendations. https://www.australiangenomics.org.au/wp-content/uploads/2021/06/NAGIM-Implementation-Recommendations-December-2022.pdf
  15. AMRAB. (2022). Australian Medical Research and Innovation Priorities 2022–2024 [Text]. https://www.health.gov.au/resources/publications/australian-medical-research-and-innovation-priorities-2022-2024?language=en
  16. AIHW. (2022). Health expenditure Australia 2020-21. https://www.aihw.gov.au/reports/health-welfare-expenditure/health-expenditure-australia-2020-21/contents/about
  17. Rosinach, N. Q., Moreno, P. A., Callahan, T., Delussu, G., Fraboulet, C., Jacobsen, J., Castro, L. J., Kaliyaperumal, R., Kulmanov, M., Robinson, P., Satagopam, V., Siapos, A., Touré, V., & Welter, D. (2022). Mapping OHDSI OMOP Common Data Model and GA4GH Phenopackets for COVID-19 disease epidemics and analytics. BioHackrXiv. https://doi.org/10.37044/osf.io/ep3xh
  18. Shih, C. C., Chen, J., Lee, A. S., Bertin, N., Hebrard, M., Khor, C. C., Li, Z., Tan, J. H. J., Meah, W. Y., Peh, S. Q., Mok, S. Q., Sim, K. S., Liu, J., Wang, L., Wong, E., Li, J., Tin, A., Cheng, C.-Y., Heng, C.-K., … Dorajoo, R. (2022). RAPTOR: A Five-Safes approach to a secure, cloud native and serverless genomics data repository. bioRxiv. https://doi.org/10.1101/2022.10.27.514127
  19. CNCB-NGDC Members and Partners. (2022). Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2023. Nucleic Acids Research, gkac1073. https://doi.org/10.1093/nar/gkac1073
  20. Tudini, E., Andrews, J., Lawrence, D. M., King-Smith, S. L., Baker, N., Baxter, L., Beilby, J., Bennetts, B., Beshay, V., Black, M., Boughtwood, T. F., Brion, K., Cheong, P. L., Christie, M., Christodoulou, J., Chong, B., Cox, K., Davis, M. R., Dejong, L., … Spurdle, A. B. (2022). Shariant platform: Enabling evidence sharing across Australian clinical genetic-testing laboratories to support variant interpretation. The American Journal of Human Genetics, 109(11), 1960–1973. https://doi.org/10.1016/j.ajhg.2022.10.006
  21. Bönisch, C., Kesztyüs, D., & Kesztyüs, T. (2022). Harvesting metadata in clinical care: a crosswalk between FHIR, OMOP, CDISC and openEHR metadata. Scientific Data, 9(1), 659. https://doi.org/10.1038/s41597-022-01792-7
  22. Molnár-Gábor, F., Beauvais, M. J. S., Bernier, A., Jimenez, M. P. N., Recuero, M., & Knoppers, B. M. (2022). Bridging the European Data Sharing Divide in Genomic Science. Journal of Medical Internet Research, 24(10), e37236. https://doi.org/10.2196/37236
  23. Munoz-Torres, M. (2022). BOSC2022 S3ba Monica Munoz Torres The GA4GH Phenopacket schema, A computable representation of clini. https://www.youtube.com/watch?v=Qvnmz_wIggg
  24. Iudin, A., Korir, P. K., Somasundharam, S., Weyand, S., Cattavitello, C., Fonseca, N., Salih, O., Kleywegt, G. J., & Patwardhan, A. (2022). EMPIAR: The Electron Microscopy Public Image Archive. bioRxiv. https://doi.org/10.1101/2022.10.04.510785
  25. Oliveira, J. S., Silva, F. M. da, Oliveira, J. L., Silva, M., & Melo, A. M. P. (2022). The Portuguese Local European Genome-Phenome Archive (EGA). https://doi.org/10.5281/zenodo.7186542
  26. Department of Industry, S. and R. (2022). Australia’s National Science Statement \textbar Department of Industry, Science and Resources [Strategy or plan]. In https://www.industry.gov.au/node/75715. https://www.industry.gov.au/publications/australias-national-science-statement
  27. Grimes, J., Szul, P., Metke-Jimenez, A., Lawley, M., & Loi, K. (2022). Pathling: analytics on FHIR. Journal of Biomedical Semantics, 13(1), 23. https://doi.org/10.1186/s13326-022-00277-1
  28. Rueda, M., Ariosa, R., Moldes, M., & Rambla, J. (2022). Beacon V2 Reference Implementation: a Toolkit to enable federated sharing of genomic and phenotypic data. Bioinformatics, btac568. https://doi.org/10.1093/bioinformatics/btac568
  29. DiStefano, M. T., Goehringer, S., Babb, L., Alkuraya, F. S., Amberger, J., Amin, M., Austin-Tse, C., Balzotti, M., Berg, J. S., Birney, E., Bocchini, C., Bruford, E. A., Coffey, A. J., Collins, H., Cunningham, F., Daugherty, L. C., Einhorn, Y., Firth, H. V., Fitzpatrick, D. R., … Rehm, H. L. (2022). The Gene Curation Coalition: A global effort to harmonize gene–disease evidence resources. Genetics in Medicine, 24(8), 1732–1742. https://doi.org/10.1016/j.gim.2022.04.017
  30. Duda, S. N., Kennedy, N., Conway, D., Cheng, A. C., Nguyen, V., Zayas-Cabán, T., & Harris, P. A. (2022). HL7 FHIR-based tools and initiatives to support clinical research: a scoping review. Journal of the American Medical Informatics Association, 29(9), 1642–1653. https://doi.org/10.1093/jamia/ocac105
  31. Bruns, A., Benet-Pages, A., Eufinger, J., Graessner, H., Kohlbacher, O., Molnár-Gábor, F., Parker, S., Schickhardt, C., Stegle, O., & Winkler, E. (2022). Consent Modules for Data Sharing via the German Human Genome-Phenome Archive (GHGA). https://zenodo.org/record/6828131
  32. GA4GH. (2022). Data Repository Service (DRS) API. Global Alliance for Genomics and Health. https://github.com/ga4gh/data-repository-service-schemas
  33. Brandt, P. S., Kho, A., Luo, Y., Pacheco, J. A., Walunas, T. L., Hakonarson, H., Hripcsak, G., Liu, C., Shang, N., Weng, C., Walton, N., Carrell, D. S., Crane, P. K., Larson, E., Chute, C. G., Kullo, I., Carroll, R., Denny, J., Ramirez, A., … Rasmussen, L. V. (2022). Characterizing Variability of EHR-Driven Phenotype Definitions. medRxiv. https://doi.org/10.1101/2022.07.10.22277390
  34. Vorisek, C. N., Lehne, M., Klopfenstein, S. A. I., Mayer, P. J., Bartschke, A., Haese, T., & Thun, S. (2022). Fast Healthcare Interoperability Resources (FHIR) for Interoperability in Health Research: Systematic Review. JMIR Medical Informatics, 10(7), e35724. https://doi.org/10.2196/35724
  35. Carnuccio, P., Cowley, M., Davies, K., Downton, M., Dumevska, B., Holliday, J., Kummerfeld, S., Lin, A., Monro, D., Patterson, A., Pope, B., Ravishankar, S., Robinson, A., Scullen, J., Shadbolt, M., Syed, M., Wood, S., & Wong-Erasmus, M. (2022). Human Genomes Platform Project: Federated Identity and Access Management (IAM) Discovery Phase Report. Zenodo. https://doi.org/10.5281/zenodo.6644009
  36. Carnuccio, P., Cowley, M., Davies, K., Druken, K., Holliday, J., Kummerfeld, S., Monro, D., Patterson, A., Pearson, J., Pope, B., Scullen, J., Shadbolt, M., Wong-Erasmus, M., & Wood, S. (2022). Human Genomes Platform Project: DAC Automation Discovery Phase Report. Zenodo. https://doi.org/10.5281/zenodo.6644050
  37. Repchevsky, D., Capella-Gutierrez, S., & Gelpí, J. L. (2022). Open source Java implementation of the Beacon v2 API. F1000Research, 11. https://doi.org/10.7490/f1000research.1118980.1
  38. Shadbolt, M., Boughtwood, T., Christiansen, J., Copty, J., Cowley, M., Davies, K., Downton, M., Druken, K., Evans, B., Gaff, C., Gilbert, A., Hall, C., Hofmann, O., Holliday, J., Kaplan, W., Koufariotis, R., Kummerfeld, S., Leonard, C., Lin, A., … Wood, S. (2022). National and international collaboration to facilitate human genomics data sharing in Australia: The Human Genomes Platform Project. F1000Research, 11. https://doi.org/10.7490/f1000research.1118989.1
  39. Jacobsen, J. O. B., Baudis, M., Baynam, G. S., Beckmann, J. S., Beltran, S., Buske, O. J., Callahan, T. J., Chute, C. G., Courtot, M., Danis, D., Elemento, O., Essenwanger, A., Freimuth, R. R., Gargano, M. A., Groza, T., Hamosh, A., Harris, N. L., Kaliyaperumal, R., Lloyd, K. C. K., … Robinson, P. N. (2022). The GA4GH Phenopacket schema defines a computable representation of clinical data. Nature Biotechnology, 40(6), 817–820. https://doi.org/10.1038/s41587-022-01357-4
  40. Hartley, M., Kleywegt, G. J., Patwardhan, A., Sarkans, U., Swedlow, J. R., & Brazma, A. (2022). The BioImage Archive – Building a Home for Life-Sciences Microscopy Data. Journal of Molecular Biology, 434(11), 167505. https://doi.org/10.1016/j.jmb.2022.167505
  41. GA4GH. (2022). New release of GA4GH Beacon expands genomic and clinical data access [Article]. https://www.ga4gh.org/news/new-release-of-ga4gh-beacon-expands-genomic-and-clinical-data-access/
  42. Hernandez, S., Fairchild, K., Pemberton, M., Dahmer, J., Zhang, W., Palchuk, M. B., & Topaloglu, U. (2022). Applying FHIR Genomics for Research – From Sequencing to Database. AMIA Annual Symposium Proceedings, 2022, 236–243. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9285172/
  43. Gruendner, J., Deppenwiese, N., Folz, M., Köhler, T., Kroll, B., Prokosch, H.-U., Rosenau, L., Rühle, M., Scheidl, M.-A., Schüttler, C., Sedlmayr, B., Twrdik, A., Kiel, A., & Majeed, R. W. (2022). The Architecture of a Feasibility Query Portal for Distributed COVID-19 Fast Healthcare Interoperability Resources (FHIR) Patient Data Repositories: Design and Implementation Study. JMIR Medical Informatics, 10(5), e36709. https://doi.org/10.2196/36709
  44. Department of Education, S. and E. (2022). 2021 National Research Infrastructure Roadmap [Text]. https://www.education.gov.au/national-research-infrastructure/resources/2021-national-research-infrastructure-roadmap
  45. Gefenas, E., Lekstutiene, J., Lukaseviciene, V., Hartlev, M., Mourby, M., & Cathaoir, K. Ó. (2022). Controversies between regulations of research ethics and protection of personal data: informed consent at a cross-road. Medicine, Health Care and Philosophy, 25(1), 23–30. https://doi.org/10.1007/s11019-021-10060-1
  46. Horgan, D., Boccia, S., Becker, R., Scollen, S., Merchant, A., van El, C., Hoxaj, I., Sassano, M., Pezzullo, A., & Julkowska, D. (2022). B1MG D1.5 Stakeholders trust in genomic data sharing landscape analysis. https://doi.org/10.5281/zenodo.6382431
  47. Chatterjee, A., Pahari, N., & Prinz, A. (2022). HL7 FHIR with SNOMED-CT to Achieve Semantic and Structural Interoperability in Personal Health Data: A Proof-of-Concept Study. Sensors, 22(10), 3756. https://doi.org/10.3390/s22103756
  48. Brambilla Pisoni, G., & Taddeo, M. (2022). Apropos Data Sharing: Abandon the Distrust and Embrace the Opportunity. DNA and Cell Biology, 41(1), 11–15. https://doi.org/10.1089/dna.2021.0501
  49. Sayers, E. W., Cavanaugh, M., Clark, K., Pruitt, K. D., Schoch, C. L., Sherry, S. T., & Karsch-Mizrachi, I. (2022). GenBank. Nucleic Acids Research, 50(D1), D161–D164. https://doi.org/10.1093/nar/gkab1135
  50. Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D. J., Prakash, A., Frericks-Zipper, A., Eisenacher, M., Walzer, M., Wang, S., Brazma, A., & Vizcaíno, J. A. (2022). The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Research, 50(D1), D543–D552. https://doi.org/10.1093/nar/gkab1038
  51. CNCB-NGDC Members and Partners. (2022). Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Research, 50(D1), D27–D38. https://doi.org/10.1093/nar/gkab951
  52. Okido, T., Kodama, Y., Mashima, J., Kosuge, T., Fujisawa, T., & Ogasawara, O. (2022). DNA Data Bank of Japan (DDBJ) update report 2021. Nucleic Acids Research, 50(D1), D102–D105. https://doi.org/10.1093/nar/gkab995
  53. Katz, K., Shutov, O., Lapoint, R., Kimelman, M., Brister, J. R., & O’Sullivan, C. (2022). The Sequence Read Archive: a decade more of explosive growth. Nucleic Acids Research, 50(D1), D387–D390. https://doi.org/10.1093/nar/gkab1053
  54. Cezard, T., Cunningham, F., Hunt, S. E., Koylass, B., Kumar, N., Saunders, G., Shen, A., Silva, A. F., Tsukanov, K., Venkataraman, S., Flicek, P., Parkinson, H., & Keane, T. M. (2022). The European Variation Archive: a FAIR resource of genomic variation for all species. Nucleic Acids Research, 50(D1), D1216–D1220. https://doi.org/10.1093/nar/gkab960
  55. Moreno, P., Fexova, S., George, N., Manning, J. R., Miao, Z., Mohammed, S., Muñoz-Pomer, A., Fullgrabe, A., Bi, Y., Bush, N., Iqbal, H., Kumbham, U., Solovyev, A., Zhao, L., Prakash, A., García-Seisdedos, D., Kundu, D. J., Wang, S., Walzer, M., … Papatheodorou, I. (2022). Expression Atlas update: gene and protein expression in multiple species. Nucleic Acids Research, 50(D1), D129–D140. https://doi.org/10.1093/nar/gkab1030
  56. Cummins, C., Ahamed, A., Aslam, R., Burgin, J., Devraj, R., Edbali, O., Gupta, D., Harrison, P. W., Haseeb, M., Holt, S., Ibrahim, T., Ivanov, E., Jayathilaka, S., Kadhirvelu, V., Kay, S., Kumar, M., Lathi, A., Leinonen, R., Madeira, F., … Cochrane, G. (2022). The European Nucleotide Archive in 2021. Nucleic Acids Research, 50(D1), D106–D110. https://doi.org/10.1093/nar/gkab1051
  57. Schatz, M. C., Philippakis, A. A., Afgan, E., Banks, E., Carey, V. J., Carroll, R. J., Culotti, A., Ellrott, K., Goecks, J., Grossman, R. L., Hall, I. M., Hansen, K. D., Lawson, J., Leek, J. T., Luria, A. O. D., Mosher, S., Morgan, M., Nekrutenko, A., O’Connor, B. D., … Wuichet, K. (2022). Inverting the model of genomics data sharing with the NHGRI Genomic Data Science Analysis, Visualization, and Informatics Lab-space. Cell Genomics, 2(1). https://doi.org/10.1016/j.xgen.2021.100085
  58. Freeberg, M. A., Fromont, L. A., D’Altri, T., Romero, A. F., Ciges, J. I., Jene, A., Kerry, G., Moldes, M., Ariosa, R., Bahena, S., Barrowdale, D., Barbero, M. C., Fernandez-Orth, D., Garcia-Linares, C., Garcia-Rios, E., Haziza, F., Juhasz, B., Llobet, O. M., Milla, G., … Rambla, J. (2022). The European Genome-phenome Archive in 2021. Nucleic Acids Research, 50(D1), D980–D987. https://doi.org/10.1093/nar/gkab1059
  59. Kerry, G., Keane, T., Rambla, J., Spalding, D., Flicek, P., Parkinson, H., & Freeberg, M. (2022). Federated EGA Node Operations Guidelines. https://ega-archive.org/files/EGA-Node-Operations-v2.pdf
  60. Department of Industry, S. and R. (2022). National Reconstruction Fund: consultation paper. https://consult.industry.gov.au/national-reconstruction-fund
  61. Rambla, J., Baudis, M., Ariosa, R., Beck, T., Fromont, L. A., Navarro, A., Paloots, R., Rueda, M., Saunders, G., Singh, B., Spalding, J. D., Törnroos, J., Vasallo, C., Veal, C. D., & Brookes, A. J. (2022). Beacon v2 and Beacon networks: A “lingua franca” for federated data discovery in biomedical genomics, and beyond. Human Mutation, 43(6), 791–799. https://doi.org/10.1002/humu.24369
  62. Laurie, S., Piscia, D., Matalonga, L., Corvó, A., Fernández-Callejo, M., Garcia-Linares, C., Hernandez-Ferrer, C., Luengo, C., Martínez, I., Papakonstantinou, A., Picó-Amador, D., Protasio, J., Thompson, R., Tonda, R., Bayés, M., Bullich, G., Camps-Puchadas, J., Paramonov, I., Trotta, J.-R., … Beltran, S. (2022). The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases. Human Mutation, 43(6), 717–733. https://doi.org/10.1002/humu.24353
  63. McWhirter, R. (2022). Holding Human Research Ethics Committees to Account: A Role for Judicial Review? Adelaide Law Review. http://www8.austlii.edu.au/cgi-bin/viewdoc/au/journals/AdelLawRw//2022/14.html
  64. Vasilevsky, N. A., Matentzoglu, N. A., Toro, S., Flack, J. E., Hegde, H., Unni, D. R., Alyea, G. F., Amberger, J. S., Babb, L., Balhoff, J. P., Bingaman, T. I., Burns, G. A., Buske, O. J., Callahan, T. J., Carmody, L. C., Cordo, P. C., Chan, L. E., Chang, G. S., Christiaens, S. L., … Haendel, M. A. (2022). Mondo: Unifying diseases for the world, by the world. MedRxiv. https://doi.org/10.1101/2022.04.13.22273750
  65. AG. (2022). Privacy Act 1988. http://www.legislation.gov.au/Details/C2022C00199
  66. OAIC. (2022). The Privacy Act informational website. In Home. https://www.oaic.gov.au/privacy/the-privacy-act
  67. GA4GH. (2022). Workflow Execution Service. https://ga4gh.github.io/workflow-execution-service-schemas/docs/
  68. GA4GH. (2022). Welcome to the technical documentation for the GA4GH Pedigree Standard! — 0.1 documentation. https://pedigree.readthedocs.io/en/latest/
  69. team, F. A. I. R. (2022). FAIRsharing \textbar Home. https://fairsharing.org/
  70. GA4GH. (2022). GA4GH DRS Client Documentation — GA4GH DRS Client documentation. https://ga4gh-drs-client.readthedocs.io/en/latest/
  71. FHIR. (2022). Summary - FHIR v4.3.0. https://www.hl7.org/fhir/summary.html
  72. OHDSI. (2022). OMOP Common Data Model – OHDSI. https://www.ohdsi.org/data-standardization/the-common-data-model/
  73. Martínez-García, A., Cangioli, G., Chronaki, C., Löbe, M., Beyan, O., Juehne, A., & Parra-Calderón, C. L. (2022). FAIRness for FHIR: Towards Making Health Datasets FAIR Using HL7 FHIR. MEDINFO 2021: One World, One Health – Global Partnership for Digital Innovation, 22–26. https://doi.org/10.3233/SHTI220024
  74. GA4GH. (2022). GA4GH WES API enables portable genomic analysis. https://www.ga4gh.org/news/ga4gh-wes-api-enables-portable-genomic-analysis/
  75. Nature, S. (2022). Mandated data types \textbar Authors \textbar Springer Nature. https://www.springernature.com/gp/authors/research-data-policy/repositories-socsci/19540364
  76. University, N. T. (2022). LibGuides: Research Data Management: Sensitive Data. https://libguides.ntu.edu.sg/rdm/sensitivedata
  77. nature. (2022). Data Repository Guidance \textbar Scientific Data. https://www.nature.com/sdata/policies/repositories
  78. GA4GH. (2022). DRS API: Enabling Cloud-Based Data Access and Retrieval. https://www.ga4gh.org/news/drs-api-enabling-cloud-based-data-access-and-retrieval/
  79. GA4GH. (2022). Data Repository Service. https://ga4gh.github.io/data-repository-service-schemas/preview/release/drs-1.0.0/docs/
  80. ENA. (2022). ENA: Guidelines and Tutorials — ENA Training Modules 1 documentation. https://ena-docs.readthedocs.io/en/latest/#
  81. CNCB-NGDC. (2022). Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. - Abstract - Europe PMC. https://europepmc.org/article/MED/34718731
  82. EGA. (2022). Prepare XMLs - EGA European Genome-Phenome Archive. https://ega-archive.org/submission/sequence/programmatic_submissions/prepare_xml
  83. GA4GH. (2022). GA4GH Passports and the Authorization and Authentication Infrastructure. https://www.ga4gh.org/news/ga4gh-passports-and-the-authorization-and-authentication-infrastructure/
  84. Davis, S. (2022). GEOquery: Get data from NCBI Gene Expression Omnibus (GEO). Bioconductor version: Release (3.15). https://doi.org/10.18129/B9.bioc.GEOquery
  85. Kauffmann, A., Emam, I., & Schubert, M. (2022). ArrayExpress: Access the ArrayExpress Microarray Database at EBI and build Bioconductor data structures: ExpressionSet, AffyBatch, NChannelSet. Bioconductor version: Release (3.15). https://doi.org/10.18129/B9.bioc.ArrayExpress
  86. Nielsen, J. L., Johnston, C., O’Brien, T., & Tyrrell, V. J. (2022). Returning raw genomic data: rights of research participants and obligations of health care professionals. Medical Journal of Australia, 216(11), 550–552. https://doi.org/10.5694/mja2.51546
  87. Ladewig, M. S., Jacobsen, J. O. B., Wagner, A. H., Danis, D., El Kassaby, B., Gargano, M., Groza, T., Baudis, M., Steinhaus, R., Seelow, D., Bechrakis, N. E., Mungall, C. J., Schofield, P. N., Elemento, O., Smith, L., McMurry, J. A., Munoz-Torres, M., Haendel, M. A., & Robinson, P. N. (2022). GA4GH Phenopackets: A Practical Introduction. Advanced Genetics, n/a(n/a), 2200016. https://doi.org/10.1002/ggn2.202200016
  88. Anagnostou, P., Capocasa, M., Brisighelli, F., Battaggia, C., & Destro Bisol, G. (2021). The emerging complexity of Open Science: assessing Intelligent Data Openness in Genomic Anthropology and Human Genomics. Journal of Anthropological Sciences = Rivista Di Antropologia : JASS / Istituto Italiano Di Antropologia, 99. https://doi.org/10.4436/JASS.99016
  89. AMRAB. (2021). Australian Medical Research and Innovation Strategy 2021-2026 [Text]. https://www.health.gov.au/resources/publications/australian-medical-research-and-innovation-strategy-2021-2026?language=en
  90. Informatics, O. H. D. S. and. (2021). Chapter 4 The Common Data Model \textbar The Book of OHDSI. https://ohdsi.github.io/TheBookOfOhdsi/
  91. Lawson, J., Cabili, M. N., Kerry, G., Boughtwood, T., Thorogood, A., Alper, P., Bowers, S. R., Boyles, R. R., Brookes, A. J., Brush, M., Burdett, T., Clissold, H., Donnelly, S., Dyke, S. O. M., Freeberg, M. A., Haendel, M. A., Hata, C., Holub, P., Jeanson, F., … Courtot, M. (2021). The Data Use Ontology to streamline responsible access to human biomedical datasets. Cell Genomics, 1(2), 100028. https://doi.org/10.1016/j.xgen.2021.100028
  92. Voisin, C., Linden, M., Dyke, S. O. M., Bowers, S. R., Alper, P., Barkley, M. P., Bernick, D., Chao, J., Courtot, M., Jeanson, F., Konopko, M. A., Kuba, M., Lawson, J., Leinonen, J., Li, S., Ota Wang, V., Philippakis, A. A., Reinold, K., Rushton, G. A., … Nyrönen, T. H. (2021). GA4GH Passport standard for digital identity and access permissions. Cell Genomics, 1(2), 100030. https://doi.org/10.1016/j.xgen.2021.100030
  93. Wagner, A. H., Babb, L., Alterovitz, G., Baudis, M., Brush, M., Cameron, D. L., Cline, M., Griffith, M., Griffith, O. L., Hunt, S. E., Kreda, D., Lee, J. M., Li, S., Lopez, J., Moyer, E., Nelson, T., Patel, R. Y., Riehle, K., Robinson, P. N., … Hart, R. K. (2021). The GA4GH Variation Representation Specification: A computational framework for variation representation and federated identification. Cell Genomics, 1(2), 100027. https://doi.org/10.1016/j.xgen.2021.100027
  94. Rehm, H. L., Page, A. J. H., Smith, L., Adams, J. B., Alterovitz, G., Babb, L. J., Barkley, M. P., Baudis, M., Beauvais, M. J. S., Beck, T., Beckmann, J. S., Beltran, S., Bernick, D., Bernier, A., Bonfield, J. K., Boughtwood, T. F., Bourque, G., Bowers, S. R., Brookes, A. J., … Birney, E. (2021). GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell Genomics, 1(2), 100029. https://doi.org/10.1016/j.xgen.2021.100029
  95. Cabili, M. N., Lawson, J., Saltzman, A., Rushton, G., O’Rourke, P., Wilbanks, J., Rodriguez, L. L., Nyronen, T., Courtot, M., Donnelly, S., & Philippakis, A. A. (2021). Empirical validation of an automated approach to data use oversight. Cell Genomics, 1(2), 100031. https://doi.org/10.1016/j.xgen.2021.100031
  96. Hekel, R., Budis, J., Kucharik, M., Radvanszky, J., Pös, Z., & Szemes, T. (2021). Privacy-preserving storage of sequenced genomic data. BMC Genomics, 22(1), 712. https://doi.org/10.1186/s12864-021-07996-2
  97. Zurek, B., Ellwanger, K., Vissers, L. E. L. M., Schüle, R., Synofzik, M., Töpf, A., de Voer, R. M., Laurie, S., Matalonga, L., Gilissen, C., Ossowski, S., ’t Hoen, P. A. C., Vitobello, A., Schulze-Hentrich, J. M., Riess, O., Brunner, H. G., Brookes, A. J., Rath, A., Bonne, G., … Graessner, H. (2021). Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases. European Journal of Human Genetics, 29(9), 1325–1331. https://doi.org/10.1038/s41431-021-00859-0
  98. Wirth, F. N., Meurers, T., Johns, M., & Prasser, F. (2021). Privacy-preserving data sharing infrastructures for medical research: systematization and comparison. BMC Medical Informatics and Decision Making, 21(1), 242. https://doi.org/10.1186/s12911-021-01602-x
  99. Chen, T., Chen, X., Zhang, S., Zhu, J., Tang, B., Wang, A., Dong, L., Zhang, Z., Yu, C., Sun, Y., Chi, L., Chen, H., Zhai, S., Sun, Y., Lan, L., Zhang, X., Xiao, J., Bao, Y., Wang, Y., … Zhao, W. (2021). The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteomics & Bioinformatics / Beijing Genomics Institute. https://doi.org/10.1016/j.gpb.2021.08.001
  100. Tedersoo, L., Küngas, R., Oras, E., Köster, K., Eenmaa, H., Leijen, Ä., Pedaste, M., Raju, M., Astapova, A., Lukner, H., Kogermann, K., & Sepp, T. (2021). Data sharing practices and data availability upon request differ across scientific disciplines. Scientific Data, 8(1), 192. https://doi.org/10.1038/s41597-021-00981-0
  101. Oestreich, M., Chen, D., Schultze, J. L., Fritz, M., & Becker, M. (2021). Privacy considerations for sharing genomics data. EXCLI Journal, 20, 1243–1260. https://doi.org/10.17179/excli2021-4002
  102. Harrow, J., Drysdale, R., Smith, A., Repo, S., Lanfear, J., & Blomberg, N. (2021). ELIXIR: Providing a Sustainable Infrastructure for Life Science Data at European Scale. Bioinformatics (Oxford, England), btab481. https://doi.org/10.1093/bioinformatics/btab481
  103. Tripp, S., & Grueber, M. (2021). The Economic Impact and Functional Applications of Human Genetics and Genomics. https://www.ashg.org/wp-content/uploads/2021/05/ASHG-TEConomy-Impact-Report-Final.pdf
  104. Cannon, M., Graf, C., McNeice, K., Chan, W. M., Callaghan, S., Carnevale, I., Cranston, I., Edmunds, S. C., Everitt, N., Ganley, E., Hrynaszkiewicz, I., Khodiyar, V. K., Leary, A., Lemberger, T., MacCallum, C. J., Murray, H., Sharples, K., Soares E Silva, M., Wright, G., … (Moderator) Sansone, S.-A. (2021). Repository Features to Help Researchers: An invitation to a dialogue. Zenodo. https://doi.org/10.5281/zenodo.4683794
  105. Carroll, S. R., Herczog, E., Hudson, M., Russell, K., & Stall, S. (2021). Operationalizing the CARE and FAIR Principles for Indigenous data futures. Scientific Data, 8(1), 108. https://doi.org/10.1038/s41597-021-00892-0
  106. Haas, M. A., Teare, H., Prictor, M., Ceregra, G., Vidgen, M. E., Bunker, D., Kaye, J., & Boughtwood, T. (2021). ’CTRL’: an online, Dynamic Consent and participant engagement platform working towards solving the complexities of consent in genomic research. European Journal of Human Genetics, 29(4), 687–698. https://doi.org/10.1038/s41431-020-00782-w
  107. Vernon, S. T., Tang, O., Kim, T., Chan, A. S., Kott, K. A., Park, J., Hansen, T., Koay, Y. C., Grieve, S. M., O’Sullivan, J. F., Yang, J. Y., & Figtree, G. A. (2021). Metabolic Signatures in Coronary Artery Disease: Results from the BioHEART-CT Study. Cells, 10(5). https://doi.org/10.3390/cells10050980
  108. Dursi, L. J., Bozoky, Z., de Borja, R., Li, J., Bujold, D., Lipski, A., Rashid, S. F., Sethi, A., Memon, N., Naidoo, D., Coral-Sasso, F., Wong, M., Quirion, P.-O., Lu, Z., Agarwal, S., Pavlov, K., Ponomarev, A., Husic, M., Pace, K., … Brudno, M. (2021). Candig: secure federated genomic queries and analyses across jurisdictions. BioRxiv. https://doi.org/10.1101/2021.03.30.434101
  109. Mukherjee, S., Stamatis, D., Bertsch, J., Ovchinnikova, G., Sundaramurthi, J. C., Lee, J., Kandimalla, M., Chen, I.-M. A., Kyrpides, N. C., & Reddy, T. B. K. (2021). Genomes OnLine Database (GOLD) v.8: overview and updates. Nucleic Acids Research, 49(D1), D723–D733. https://doi.org/10.1093/nar/gkaa983
  110. Dove, E. S., Chen, J., & Loideain, N. N. (2021). Raising standards for global data-sharing. Science, 371(6525), 133–134. https://doi.org/10.1126/science.abf4286
  111. GA4GH. (2021). GitHub - EBISPOT/DUO: Ontology for consent codes and data use requirements. https://github.com/EBISPOT/DUO
  112. GA4GH. (2021). data-security/AAIConnectProfile.md at master · ga4gh/data-security · GitHub. https://github.com/ga4gh/data-security/blob/master/AAI/AAIConnectProfile.md#abstract
  113. EMBL-EBI. (2021). EMBL-EBI Impact report 2021 – EMBL Documents. https://www.embl.org/documents/document/embl-ebi-impact-report-2021/
  114. CINECA. (2021). Assigning standard descriptors to free text — CINECA - Common Infrastructure for National Cohorts in Europe, Canada, and Africa. https://www.cineca-project.eu/blog-all/assigning-standard-descriptors-to-free-text
  115. CINECA. (2021). LexMapr - A rule-based text-mining tool for ontology term mapping and classification — CINECA - Common Infrastructure for National Cohorts in Europe, Canada, and Africa. https://www.cineca-project.eu/blog-all/lexmapr-a-rule-based-text-mining-tool-for-ontology-term-mapping-and-classification
  116. CINECA. (2021). Uncovering metadata from semi-structured cohort data — CINECA - Common Infrastructure for National Cohorts in Europe, Canada, and Africa. https://www.cineca-project.eu/blog-all/uncovering-metadata-from-semi-structured-cohort-data
  117. O’Doherty, K. C., Shabani, M., Dove, E. S., Bentzen, H. B., Borry, P., Burgess, M. M., Chalmers, D., De Vries, J., Eckstein, L., Fullerton, S. M., Juengst, E., Kato, K., Kaye, J., Knoppers, B. M., Koenig, B. A., Manson, S. M., McGrail, K. M., McGuire, A. L., Meslin, E. M., … Burke, W. (2021). Toward better governance of human genomic data. Nature Genetics, 53(1), 2–8. https://doi.org/10.1038/s41588-020-00742-6
  118. InGeNA. (2021). Genomic Data in Australia: An industry perspective on clarity, certainty and standardisation.
  119. CellPress. (2021). Author’s guide: Standardized datatypes, datatype specific repositories, and general-purpose repositories recommended by Cell Press. https://www.cell.com/pb-assets/journals/research/cellpress/data/RecommendRepositories-1621989644133.pdf
  120. Adil, A., Kumar, V., Jan, A. T., & Asger, M. (2021). Single-Cell Transcriptomics: Current Methods and Challenges in Data Acquisition and Analysis. Frontiers in Neuroscience, 15. https://www.frontiersin.org/articles/10.3389/fnins.2021.591122
  121. Jin, V., Cook, J., Dubeau, A., Dai, R., Freitas, T., Dursi, J., Gill, E., Winsor, G., Courtot, M., Subbarao, P., & Brinkman, F. (2021). CINECA synthetic cohort NA Canada CHILD [CC-BY-NC-SA]. Zenodo. https://doi.org/10.5281/zenodo.5122832
  122. Tanjo, T., Kawai, Y., Tokunaga, K., Ogasawara, O., & Nagasaki, M. (2021). Practical guide for managing large-scale human genome data in research. Journal of Human Genetics, 66(1), 39–52. https://doi.org/10.1038/s10038-020-00862-1
  123. Vidgen, M. E., Kaladharan, S., Malacova, E., Hurst, C., & Waddell, N. (2020). Sharing genomic data from clinical testing with researchers: public survey of expectations of clinical genomic data management in Queensland, Australia. BMC Medical Ethics, 21(1), 119. https://doi.org/10.1186/s12910-020-00563-6
  124. Arita, M., Karsch-Mizrachi, I., & Cochrane, G. (2020). The international nucleotide sequence database collaboration. Nucleic Acids Research, 49(D1), D121–D124. https://doi.org/10.1093/nar/gkaa967
  125. Bull, S., & Bhagwandin, N. (2020). The ethics of data sharing and biobanking in health research. Wellcome Open Research, 5, 270. https://doi.org/10.12688/wellcomeopenres.16351.1
  126. Byrd, J. B., Greene, A. C., Prasad, D. V., Jiang, X., & Greene, C. S. (2020). Responsible, practical genomic data sharing that accelerates research. Nature Reviews. Genetics, 21(10), 615–629. https://doi.org/10.1038/s41576-020-0257-5
  127. Bovenberg, J., Peloquin, D., Bierer, B., Barnes, M., & Knoppers, B. M. (2020). How to fix the GDPR’s frustration of global biomedical research. Science, 370(6512), 40–42. https://doi.org/10.1126/science.abd2499
  128. Queensland Genomics. (2020). Blueprint for a National Approach to Genomic Information Management (NAGIM). Queensland Health. https://queenslandgenomics.org/capability-initiatives/national-approach-to-genomics-information-management/
  129. Osterman, T. J., Terry, M., & Miller, R. S. (2020). Improving cancer data interoperability: the promise of the minimal common oncology data elements (mcode) initiative. JCO Clinical Cancer Informatics, 4, 993–1001. https://doi.org/10.1200/CCI.20.00059
  130. Jowett, S., Dallaston, E., & Bennett, B. (2020). Genomic Research and Data-Sharing : Time to Revisit Australian Laws? The University of Queensland Law Journal, 39(2), 341–369. https://eprints.qut.edu.au/203714/
  131. Dive, L., Critchley, C., Otlowski, M., Mason, P., Wiersma, M., Light, E., Stewart, C., Kerridge, I., & Lipworth, W. (2020). Public trust and global biobank networks. BMC Medical Ethics, 21(1), 73. https://doi.org/10.1186/s12910-020-00515-0
  132. Hudson, M., Garrison, N. A., Sterling, R., Caron, N. R., Fox, K., Yracheta, J., Anderson, J., Wilcox, P., Arbour, L., Brown, A., Taualii, M., Kukutai, T., Haring, R., Te Aika, B., Baynam, G. S., Dearden, P. K., Chagné, D., Malhi, R. S., Garba, I., … Carroll, S. R. (2020). Rights, interests and expectations: Indigenous perspectives on unrestricted access to genomic data. Nature Reviews Genetics, 21(6), 377–384. https://doi.org/10.1038/s41576-020-0228-x
  133. Alterovitz, G., Heale, B., Jones, J., Kreda, D., Lin, F., Liu, L., Liu, X., Mandl, K. D., Poloway, D. W., Ramoni, R., Wagner, A., & Warner, J. L. (2020). FHIR Genomics: enabling standardization for precision medicine use cases. Npj Genomic Medicine, 5(1), 1–4. https://doi.org/10.1038/s41525-020-0115-6
  134. Sim, I., Stebbins, M., Bierer, B. E., Butte, A. J., Drazen, J., Dzau, V., Hernandez, A. F., Krumholz, H. M., Lo, B., Munos, B., Perakslis, E., Rockhold, F., Ross, J. S., Terry, S. F., Yamamoto, K. R., Zarin, D. A., & Li, R. (2020). Time for NIH to lead on data sharing. Science, 367(6484), 1308–1309. https://doi.org/10.1126/science.aba4456
  135. Pinese, M., Lacaze, P., Rath, E. M., Stone, A., Brion, M.-J., Ameur, A., Nagpal, S., Puttick, C., Husson, S., Degrave, D., Cristina, T. N., Kahl, V. F. S., Statham, A. L., Woods, R. L., McNeil, J. J., Riaz, M., Barr, M., Nelson, M. R., Reid, C. M., … Thomas, D. M. (2020). The Medical Genome Reference Bank contains whole genome and phenotype data of 2570 healthy elderly. Nature Communications, 11(1), 435. https://doi.org/10.1038/s41467-019-14079-0
  136. Alper, P. (2020). Data Protection in Biomedical Research. https://doi.org/10.5281/zenodo.5078280
  137. Deutsch, E. W., Bandeira, N., Sharma, V., Perez-Riverol, Y., Carver, J. J., Kundu, D. J., García-Seisdedos, D., Jarnuczak, A. F., Hewapathirana, S., Pullman, B. S., Wertz, J., Sun, Z., Kawano, S., Okuda, S., Watanabe, Y., Hermjakob, H., MacLean, B., MacCoss, M. J., Zhu, Y., … Vizcaíno, J. A. (2020). The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in proteomics. Nucleic Acids Research, 48(D1), D1145–D1152. https://doi.org/10.1093/nar/gkz984
  138. Haug, K., Cochrane, K., Nainala, V. C., Williams, M., Chang, J., Jayaseelan, K. V., & O’Donovan, C. (2020). MetaboLights: a resource evolving in response to the needs of its scientific community. Nucleic Acids Research, 48(D1), D440–D444. https://doi.org/10.1093/nar/gkz1019
  139. OpenAIRE. (2020). 20200429_OpenAIRE Legal Policy Webinar for researchers - YouTube. https://www.youtube.com/watch?v=85x6Rigl2-o
  140. Prictor, M., Huebner, S., Teare, H. J. A., Burchill, L., & Kaye, J. (2020). Australian Aboriginal and Torres Strait Islander Collections of Genetic Heritage: The Legal, Ethical and Practical Considerations of a Dynamic Consent Approach to Decision Making. Journal of Law, Medicine & Ethics, 48(1), 205–217. https://doi.org/10.1177/1073110520917012
  141. Kerry, G., Keane, T., Rambla, J., Spalding, D., Flicek, P., Navarro, A., & Parkinson, H. (2020). EGA Federated Node Operations. https://ega-archive.org/files/EGA-Node-Operations-v1.pdf
  142. Keane, T., Rambla, J., Spalding, D., Flicek, P., Navarro, A., & Parkinson, H. (2020). EGA Federation: Structure and organisation.
  143. Jin, V., & Brinkman, F. (2020). CINECA Cohort Level metadata Representation D3.1. Zenodo. https://doi.org/10.5281/zenodo.4575460
  144. Wall, J. D., Stawiski, E. W., Ratan, A., Kim, H. L., Kim, C., Gupta, R., Suryamohan, K., Gusareva, E. S., Purbojati, R. W., Bhangale, T., Stepanov, V., Kharkov, V., Schröder, M. S., Ramprasad, V., Tom, J., Durinck, S., Bei, Q., Li, J., Guillory, J., … GenomeAsia100K Consortium. (2019). The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature, 576(7785), 106–111. https://doi.org/10.1038/s41586-019-1793-z
  145. Martin, A. R., Williams, E., Foulger, R. E., Leigh, S., Daugherty, L. C., Niblock, O., Leong, I. U. S., Smith, K. R., Gerasimenko, O., Haraldsdottir, E., Thomas, E., Scott, R. H., Baple, E., Tucci, A., Brittain, H., de Burca, A., Ibañez, K., Kasperaviciute, D., Smedley, D., … McDonagh, E. M. (2019). PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nature Genetics, 51(11), 1560–1565. https://doi.org/10.1038/s41588-019-0528-2
  146. Wu, D., Dou, J., Chai, X., Bellis, C., Wilm, A., Shih, C. C., Soon, W. W. J., Bertin, N., Lin, C. B., Khor, C. C., DeGiorgio, M., Cheng, S., Bao, L., Karnani, N., Hwang, W. Y. K., Davila, S., Tan, P., Shabbir, A., Moh, A., … Wang, C. (2019). Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore. Cell, 179(3), 736–749.e15. https://doi.org/10.1016/j.cell.2019.09.019
  147. Stark, Z., Boughtwood, T., Phillips, P., Christodoulou, J., Hansen, D. P., Braithwaite, J., Newson, A. J., Gaff, C. L., Sinclair, A. H., & North, K. N. (2019). Australian Genomics: A Federated Model for Integrating Genomics into Healthcare. American Journal of Human Genetics, 105(1), 7–14. https://doi.org/10.1016/j.ajhg.2019.06.003
  148. Fernandez-Orth, D., Lloret-Villas, A., & Rambla de Argila, J. (2019). European Genome-Phenome Archive (EGA) - Granular Solutions for the Next 10 Years. 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), 4–6. https://doi.org/10.1109/CBMS.2019.00011
  149. Amann, R. I., Baichoo, S., Blencowe, B. J., Bork, P., Borodovsky, M., Brooksbank, C., Chain, P. S. G., Colwell, R. R., Daffonchio, D. G., Danchin, A., de Lorenzo, V., Dorrestein, P. C., Finn, R. D., Fraser, C. M., Gilbert, J. A., Hallam, S. J., Hugenholtz, P., Ioannidis, J. P. A., Jansson, J. K., … Xenarios, I. (2019). Consent insufficient for data release—Response. Science, 364(6439), 446–446. https://doi.org/10.1126/science.aax7509
  150. Nicol, D., Eckstein, L., Bentzen, H. B., Borry, P., Burgess, M., Burke, W., Chalmers, D., Cho, M., Dove, E., Fullerton, S., Ida, R., Kato, K., Kaye, J., Koenig, B., Manson, S., McGrail, K., Meslin, E., O’Doherty, K., Prainsack, B., … de Vries, J. (2019). Consent insufficient for data release. Science, 364(6439), 445–446. https://doi.org/10.1126/science.aax0892
  151. Hughes, L. R., Grossman, R. L., Flamig, Z., Prokhorenkov, A., Lukowski, M., Fitzsimons, M., Lichtenberg, T., & Tang, Y. (2019). Harmonization of clinical data across Gen3 data commons. JCO, 37(15_suppl), e18094–e18094. https://doi.org/10.1200/JCO.2019.37.15_suppl.e18094
  152. Sansone, S.-A., McQuilton, P., Rocca-Serra, P., Gonzalez-Beltran, A., Izzo, M., Lister, A. L., & Thurston, M. (2019). FAIRsharing as a community approach to standards, repositories and policies. Nature Biotechnology, 37(4), 358–367. https://doi.org/10.1038/s41587-019-0080-8
  153. Vaske, O. M., & Haussler, D. (2019). Data sharing for pediatric cancers. Science, 363(6432), 1125–1125. https://doi.org/10.1126/science.aax2739
  154. Kalkman, S., Mostert, M., Gerlinger, C., van Delden, J. J. M., & van Thiel, G. J. M. W. (2019). Responsible data sharing in international health research: a systematic review of principles and norms. BMC Medical Ethics, 20(1), 21. https://doi.org/10.1186/s12910-019-0359-9
  155. Ma, J., Chen, T., Wu, S., Yang, C., Bai, M., Shu, K., Li, K., Zhang, G., Jin, Z., He, F., Hermjakob, H., & Zhu, Y. (2019). iProX: an integrated proteome resource. Nucleic Acids Research, 47(D1), D1211–D1217. https://doi.org/10.1093/nar/gky869
  156. Athar, A., Füllgrabe, A., George, N., Iqbal, H., Huerta, L., Ali, A., Snow, C., Fonseca, N. A., Petryszak, R., Papatheodorou, I., Sarkans, U., & Brazma, A. (2019). ArrayExpress update – from bulk to single-cell expression data. Nucleic Acids Research, 47(D1), D711–D715. https://doi.org/10.1093/nar/gky964
  157. Amann, R. I., Baichoo, S., Blencowe, B. J., Bork, P., Borodovsky, M., Brooksbank, C., Chain, P. S. G., Colwell, R. R., Daffonchio, D. G., Danchin, A., de Lorenzo, V., Dorrestein, P. C., Finn, R. D., Fraser, C. M., Gilbert, J. A., Hallam, S. J., Hugenholtz, P., Ioannidis, J. P. A., Jansson, J. K., … Xenarios, I. (2019). Toward unrestricted use of public genomic data. Science, 363(6425), 350–352. https://doi.org/10.1126/science.aaw1280
  158. Courtot, M., Cherubin, L., Faulconbridge, A., Vaughan, D., Green, M., Richardson, D., Harrison, P., Whetzel, P. L., Parkinson, H., & Burdett, T. (2019). BioSamples database: an updated sample metadata hub. Nucleic Acids Research, 47(D1), D1172–D1178. https://doi.org/10.1093/nar/gky1061
  159. CNCB-NGDC. (2019). Genome Sequence Archive for Human - Policies. https://ngdc.cncb.ac.cn/gsa-human/policy/policy.jsp#responsibilitiesSubmitter
  160. NHMRC, Council, A. R., & Australia, U. (2019). Management of Data and Information in Research: A guide supporting the Australian Code for the Responsible Conduct of Research (Guide No.R41B; Number R41B). Commonwealth of Australia. https://www.nhmrc.gov.au/sites/default/files/documents/attachments/Management-of-Data-and-Information-in-Research.pdf
  161. ONE, P. L. O. S. (2019). Data Availability. In Data Availability \textbar PLOS ONE. https://journals.plos.org/plosone/s/data-availability
  162. Band, G. (2019). Me vs. the EGA part 4: losing again. https://gavinband.github.io/bioinformatics/data/2019/05/15/Me_versus_the_European_Genome_Phenome_Archive_part_four.html
  163. Band, G. (2019). Me vs. the EGA part 2: uploading data. https://gavinband.github.io/bioinformatics/data/2019/05/02/Me_versus_the_European_Genome_Phenome_Archive_part_two.html
  164. Band, G. (2019). Me vs. the EGA part 3: winning. https://gavinband.github.io/bioinformatics/data/2019/05/12/Me_versus_the_European_Genome_Phenome_Archive_part_three.html
  165. Band, G. (2019). Me vs. EGA. https://gavinband.github.io/bioinformatics/data/2019/05/01/Me_versus_the_European_Genome_Phenome_Archive.html
  166. Eckstein, L., Chalmers, D., Critchley, C., Jeanneret, R., McWhirter, R., Nielsen, J., Otlowski, M., & Nicol, D. (2018). Australia: regulating genomic data sharing to promote public trust. Human Genetics, 137(8), 583–591. https://doi.org/10.1007/s00439-018-1914-z
  167. Townend, D. (2018). Conclusion: harmonisation in genomic and health data sharing for research: an impossible dream? Human Genetics, 137(8), 657–664. https://doi.org/10.1007/s00439-018-1924-x
  168. Thorogood, A. (2018). Canada: will privacy rules continue to favour open science? Human Genetics, 137(8), 595–602. https://doi.org/10.1007/s00439-018-1905-0
  169. Phillips, M. (2018). International data-sharing norms: from the OECD to the General Data Protection Regulation (GDPR). Human Genetics, 137(8), 575–582. https://doi.org/10.1007/s00439-018-1919-7
  170. Molnár-Gábor, F. (2018). Germany: a fair balance between scientific freedom and data subjects’ rights? Human Genetics, 137(8), 619–626. https://doi.org/10.1007/s00439-018-1912-1
  171. Majumder, M. A. (2018). United States: law and policy concerning transfer of genomic data to third countries. Human Genetics, 137(8), 647–655. https://doi.org/10.1007/s00439-018-1917-9
  172. Taylor, M. J., Wallace, S. E., & Prictor, M. (2018). United Kingdom: transfers of genomic data to third countries. Human Genetics, 137(8), 637–645. https://doi.org/10.1007/s00439-018-1921-0
  173. Kim, H., Kim, S. Y., & Joly, Y. (2018). South Korea: in the midst of a privacy reform centered on data sharing. Human Genetics, 137(8), 627–635. https://doi.org/10.1007/s00439-018-1920-1
  174. Knoppers, B. M., & Joly, Y. (2018). Introduction: the why and whither of genomic data sharing. Human Genetics, 137(8), 569–574. https://doi.org/10.1007/s00439-018-1923-y
  175. Linden, M., Prochazka, M., Lappalainen, I., Bucik, D., Vyskocil, P., Kuba, M., Silén, S., Belmann, P., Sczyrba, A., Newhouse, S., Matyska, L., & Nyrönen, T. (2018). Common ELIXIR service for researcher authentication and authorisation. F1000Research, 7. https://doi.org/10.12688/f1000research.15161.1
  176. Woolley, J. P., Kirby, E., Leslie, J., Jeanson, F., Cabili, M. N., Rushton, G., Hazard, J. G., Ladas, V., Veal, C. D., Gibson, S. J., Tassé, A.-M., Dyke, S. O. M., Gaff, C., Thorogood, A., Knoppers, B. M., Wilbanks, J., & Brookes, A. J. (2018). Responsible sharing of biomedical data and biospecimens via the "Automatable Discovery and Access Matrix" (ADA-M). NPJ Genomic Medicine, 3, 17. https://doi.org/10.1038/s41525-018-0057-4
  177. Zappia, L., Phipson, B., & Oshlack, A. (2018). Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLOS Computational Biology, 14(6), e1006245. https://doi.org/10.1371/journal.pcbi.1006245
  178. Health Legal. (2018). Genomic Data & Privacy Law: A summary of Health Legal’s report for Australian Genomics. https://www.australiangenomics.org.au/wp-content/uploads/2021/09/Summary-Health-Legal-Report.pdf
  179. Sarkans, U., Gostev, M., Athar, A., Behrangi, E., Melnichuk, O., Ali, A., Minguet, J., Rada, J. C., Snow, C., Tikhonov, A., Brazma, A., & McEntyre, J. (2018). The BioStudies database—one stop shop for all data supporting a life sciences study. Nucleic Acids Research, 46(D1), D1266–D1270. https://doi.org/10.1093/nar/gkx965
  180. AusTrade. (2018). Clinical Trials Capability Report. https://www.austrade.gov.au/ArticleDocuments/2814/Clincal-Trials-Capability-Report.pdf.aspx
  181. NHMRC. (2018). Australian Code for the Responsible Conduct of Research, 2018 \textbar NHMRC. https://www.nhmrc.gov.au/about-us/publications/australian-code-responsible-conduct-research-2018
  182. NHMRC. (2018). National Statement on Ethical Conduct in Human Research (2007) - Updated 2018 \textbar NHMRC. https://www.nhmrc.gov.au/about-us/publications/national-statement-ethical-conduct-human-research-2007-updated-2018
  183. Perez-Riverol, Y., Bai, M., da Veiga Leprevost, F., Squizzato, S., Park, Y. M., Haug, K., Carroll, A. J., Spalding, D., Paschall, J., Wang, M., del-Toro, N., Ternent, T., Zhang, P., Buso, N., Bandeira, N., Deutsch, E. W., Campbell, D. S., Beavis, R. C., Salek, R. M., … Hermjakob, H. (2017). Discovering and linking public omics data sets using the Omics Discovery Index. Nature Biotechnology, 35(5), 406–409. https://doi.org/10.1038/nbt.3790
  184. Wang, Y., Song, F., Zhu, J., Zhang, S., Yang, Y., Chen, T., Tang, B., Dong, L., Ding, N., Zhang, Q., Bai, Z., Dong, X., Chen, H., Sun, M., Zhai, S., Sun, Y., Yu, L., Lan, L., Xiao, J., … Zhao, W. (2017). GSA: Genome Sequence Archive*. Genomics, Proteomics & Bioinformatics, 15(1), 14–18. https://doi.org/10.1016/j.gpb.2017.01.001
  185. Department of Industry, S. and R. (2017). Australia’s National Science Statement [Strategy or plan]. https://www.industry.gov.au/publications/australias-national-science-statement
  186. Okuda, S., Watanabe, Y., Moriya, Y., Kawano, S., Yamamoto, T., Matsumoto, M., Takami, T., Kobayashi, D., Araki, N., Yoshizawa, A. C., Tabata, T., Sugiyama, N., Goto, S., & Ishihama, Y. (2017). jPOSTrepo: an international standard data repository for proteomes. Nucleic Acids Research, 45(D1), D1107–D1111. https://doi.org/10.1093/nar/gkw1080
  187. Streeter, I., Harrison, P. W., Faulconbridge, A., Flicek, P., Parkinson, H., & Clarke, L. (2017). The human-induced pluripotent stem cell initiative—data resources for cellular genetics. Nucleic Acids Research, 45(Database issue), D691–D697. https://doi.org/10.1093/nar/gkw928
  188. Trust, W. (2017). Data, software and materials management and sharing policy - Grant Funding. In Wellcome. https://wellcome.org/grant-funding/guidance/data-software-materials-management-and-sharing-policy
  189. Garza, M., Del Fiol, G., Tenenbaum, J., Walden, A., & Zozus, M. N. (2016). Evaluating common data models for use with a longitudinal community registry. Journal of Biomedical Informatics, 64, 333–341. https://doi.org/10.1016/j.jbi.2016.10.016
  190. Grossman, R. L., Heath, A., Murphy, M., Patterson, M., & Wells, W. (2016). A case for data commons: toward data science as a service. Computing in Science & Engineering, 18(5), 10–20. https://doi.org/10.1109/MCSE.2016.92
  191. Tucker, K., Branson, J., Dilleen, M., Hollis, S., Loughlin, P., Nixon, M. J., & Williams, Z. (2016). Protecting patient privacy when sharing patient-level data from clinical trials. BMC Medical Research Methodology, 16 Suppl 1, 77. https://doi.org/10.1186/s12874-016-0169-4
  192. THE GLOBAL ALLIANCE FOR GENOMICS AND HEALTH. (2016). A federated ecosystem for sharing genomic, clinical data. Science, 352(6291), 1278–1280. https://doi.org/10.1126/science.aaf6162
  193. Vayena, E., & Gasser, U. (2016). Between openness and privacy in genomics. PLoS Medicine, 13(1), e1001937. https://doi.org/10.1371/journal.pmed.1001937
  194. Clough, E., & Barrett, T. (2016). The Gene Expression Omnibus database. Methods in Molecular Biology (Clifton, N.J.), 1418, 93–110. https://doi.org/10.1007/978-1-4939-3578-9_5
  195. Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., Iyer, R., Schatz, M. C., Sinha, S., & Robinson, G. E. (2015). Big data: astronomical or genomical? PLoS Biology, 13(7), e1002195. https://doi.org/10.1371/journal.pbio.1002195
  196. Department of Industry, S. and R. (2015). Australia’s Science and Research Priorities [Strategy or plan]. https://www.industry.gov.au/publications/australias-science-and-research-priorities-2015
  197. Philippakis, A. A., Azzariti, D. R., Beltran, S., Brookes, A. J., Brownstein, C. A., Brudno, M., Brunner, H. G., Buske, O. J., Carey, K., Doll, C., Dumitriu, S., Dyke, S. O. M., den Dunnen, J. T., Firth, H. V., Gibbs, R. A., Girdea, M., Gonzalez, M., Haendel, M. A., Hamosh, A., … Rehm, H. L. (2015). The Matchmaker Exchange: A Platform for Rare Disease Gene Discovery. Human Mutation, 36(10), 915–921. https://doi.org/10.1002/humu.22858
  198. Knoppers, B. M. (2014). Framework for responsible sharing of genomic and health-related data. The HUGO Journal, 8(1), 3. https://doi.org/10.1186/s11568-014-0003-1
  199. NIH. (2014). NIH Genomic Data Sharing Policy. https://osp.od.nih.gov/wp-content/uploads/NIH_GDS_Policy.pdf
  200. CRUK. (2014). Data sharing guidelines. In Cancer Research UK. https://www.cancerresearchuk.org/funding-for-researchers/applying-for-funding/policies-that-affect-your-grant/submission-of-a-data-sharing-and-preservation-strategy/data-sharing-guidelines
  201. Tryka, K. A., Hao, L., Sturcke, A., Jin, Y., Wang, Z. Y., Ziyabari, L., Lee, M., Popova, N., Sharopova, N., Kimura, M., & Feolo, M. (2014). NCBI’s Database of Genotypes and Phenotypes: dbGaP. Nucleic Acids Research, 42(Database issue), D975–9. https://doi.org/10.1093/nar/gkt1211
  202. Anderson, H. V., Weintraub, W. S., Radford, M. J., Kremers, M. S., Roe, M. T., Shaw, R. E., Pinchotti, D. M., & Tcheng, J. E. (2013). Standardized cardiovascular data for clinical research, registries, and patient care: a report from the Data Standards Workgroup of the National Cardiovascular Research Infrastructure project. Journal of the American College of Cardiology, 61(18), 1835–1846. https://doi.org/10.1016/j.jacc.2012.12.047
  203. Linden, M., Nyrönen, T., & Lappalainen, I. (2013). RESOURCE ENTITLEMENT MANAGEMENT SYSTEM. Trans-European Research and Education Networking Association.
  204. Rights (OCR), O. for C. (2012). Guidance Regarding Methods for De-identification of Protected Health Information in Accordance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule. In HHS.gov. https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html
  205. Reich, C., Ryan, P. B., Stang, P. E., & Rocca, M. (2012). Evaluation of alternative standardized terminologies for medical conditions within a network of observational healthcare databases. Journal of Biomedical Informatics, 45(4), 689–696. https://doi.org/10.1016/j.jbi.2012.05.002
  206. Williams, E. D., Tapp, R. J., Magliano, D. J., Shaw, J. E., Zimmet, P. Z., & Oldenburg, B. F. (2010). Health behaviours, socioeconomic status and diabetes incidence: the Australian Diabetes Obesity and Lifestyle Study (AusDiab). Diabetologia, 53(12), 2538–2545. https://doi.org/10.1007/s00125-010-1888-4
  207. Kauffmann, A., Rayner, T. F., Parkinson, H., Kapushesky, M., Lukk, M., Brazma, A., & Huber, W. (2009). Importing ArrayExpress datasets into R/Bioconductor. Bioinformatics, 25(16), 2092–2094. https://doi.org/10.1093/bioinformatics/btp354
  208. Kaye, J., Heeney, C., Hawkins, N., de Vries, J., & Boddington, P. (2009). Data sharing in genomics–re-shaping scientific practice. Nature Reviews. Genetics, 10(5), 331–335. https://doi.org/10.1038/nrg2573
  209. Rights (OCR), O. for C. (2008). The HIPAA Privacy Rule. In HHS.gov. https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
  210. Davis, S., & Meltzer, P. S. (2007). GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics, 23(14), 1846–1847. https://doi.org/10.1093/bioinformatics/btm254
  211. Barr, E. L. M., Zimmet, P. Z., Welborn, T. A., Jolley, D., Magliano, D. J., Dunstan, D. W., Cameron, A. J., Dwyer, T., Taylor, H. R., Tonkin, A. M., Wong, T. Y., McNeil, J., & Shaw, J. E. (2007). Risk of cardiovascular and all-cause mortality in individuals with diabetes mellitus, impaired fasting glucose, and impaired glucose tolerance: the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Circulation, 116(2), 151–157. https://doi.org/10.1161/CIRCULATIONAHA.106.685628
  212. Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson, R., Farne, A., Holloway, E., Kolesnykov, N., Lilja, P., Lukk, M., Mani, R., Rayner, T., Sharma, A., William, E., Sarkans, U., & Brazma, A. (2007). ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Research, 35(suppl_1), D747–D750. https://doi.org/10.1093/nar/gkl995
  213. Rayner, T. F., Rocca-Serra, P., Spellman, P. T., Causton, H. C., Farne, A., Holloway, E., Irizarry, R. A., Liu, J., Maier, D. S., Miller, M., Petersen, K., Quackenbush, J., Sherlock, G., Stoeckert, C. J., White, J., Whetzel, P. L., Wymore, F., Parkinson, H., Sarkans, U., … Brazma, A. (2006). A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB. BMC Bioinformatics, 7(1), 489. https://doi.org/10.1186/1471-2105-7-489
  214. Bard, J. B. L., & Rhee, S. Y. (2004). Ontologies in biology: design, applications and future challenges. Nature Reviews. Genetics, 5(3), 213–222. https://doi.org/10.1038/nrg1295
  215. ALRC. (2003). Essentially Yours: The Protection of Human Genetic Information in Australia (ALRC Report 96). In ALRC. https://www.alrc.gov.au/publication/essentially-yours-the-protection-of-human-genetic-information-in-australia-alrc-report-96/
  216. Brunak, S., Danchin, A., Hattori, M., Nakamura, H., Shinozaki, K., Matise, T., & Preuss, D. (2002). Nucleotide Sequence Database Policies. Science, 298(5597), 1333–1333. https://doi.org/10.1126/science.298.5597.1333b
  217. EGA. EGACryptor. Retrieved March 16, 2023, from https://ega-archive.org/submission/tools/egacryptor
  218. Group, G. L. International Comparative Legal Guides [Text]. In International Comparative Legal Guides International Business Reports. Retrieved April 14, 2023, from https://iclg.com/practice-areas/data-protection-laws-and-regulations/australia
  219. Welcome to the documentation for the phenopacket-schema! — phenopacket-schema 2.0 documentation. Retrieved March 29, 2023, from https://phenopacket-schema.readthedocs.io/en/latest/
  220. EGA. EGA submitter portal tutorial \textbar VEIS - Valorización de EGA para la industria y la sociedad. Retrieved March 16, 2023, from https://veis.bsc.es/events/ega-submitter-portal-tutorial/
  221. PanelApp on Vimeo. Retrieved January 25, 2023, from https://vimeo.com/showcase/4754293
  222. Medical Genome Reference Bank. [Page]. In Garvan Institute of Medical Research. Retrieved January 17, 2023, from https://www.garvan.org.au/research/kinghorn-centre-for-clinical-genomics/research-programs/sydney-genomics-collaborative/mgrb
  223. SG10K_Health. Retrieved November 23, 2022, from https://npm.a-star.edu.sg/